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Fishing Down Marine Food Webs
Daniel Pauly,* Villy Christensen, Johanne Dalsgaard,

Rainer Froese, Francisco Torres Jr.

The mean trophic level of the species groups reported in Food and Agricultural Orga-
nization global fisheries statistics declined from 1950 to 1994. This reflects a gradual
transition in landings from long-lived, high trophic level, piscivorous bottom fish toward
short-lived, low trophic level invertebrates and planktivorous pelagic fish. This effect, also
found to be occurring in inland fisheries, is most pronounced in the Northern Hemisphere.
Fishing down food webs (that is, at lower trophic levels) leads at first to increasing
catches, then to a phase transition associated with stagnating or declining catches.
These results indicate that present exploitation patterns are unsustainable.

Exploitation of the ocean for fish and ma-
rine invertebrates, both wholesome and
valuable products, ought to be a prosperous
sector, given that capture fisheries—in con-
trast to agriculture and aquaculture—reap
harvests that did not need to be sown. Yet
marine fisheries are in a global crisis, mainly
due to open access policies and subsidy-
driven over-capitalization (1). It may be
argued, however, that the global crisis is
mainly one of economics or of governance,
whereas the global resource base itself fluc-
tuates naturally. Contradicting this more
optimistic view, we show here that landings
from global fisheries have shifted in the last

45 years from large piscivorous fishes toward
smaller invertebrates and planktivorous
fishes, especially in the Northern Hemi-
sphere. This may imply major changes in
the structure of marine food webs.

Two data sets were used. The first has
estimates of trophic levels for 220 different
species or groups of fish and invertebrates,
covering all statistical categories included
in the official Food and Agricultural Orga-
nization (FAO) landings statistics (2). We
obtained these estimates from 60 published
mass-balance trophic models that covered
all major aquatic ecosystem types (3, 4).
The models were constructed with the Eco-
path software (5) and local data that in-
cluded detailed diet compositions (6). In
such models, fractional trophic levels (7)
are estimated values, based on the diet com-
positions of all ecosystem components rath-
er than assumed values; hence, their preci-
sion and accuracy are much higher than for
the integer trophic level values used in
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earlier global studies (8). The 220 trophic
levels derived from these 60 Ecopath appli-
cations range from a definitional value of 1
for primary producers and detritus to 4.6
(% 0.32) for snappers (family Lutjanidae)
on the shelf of Yucatan, Mexico (9). The
second data set we used comprises FAO
global statistics (2) of fisheries landings for
the years from 1950 to 1994, which are
based on reports submitted annually by
FAO member countries and other states
and were recently used for reassessing
world fisheries potential (10). By combin-
ing these data sets we could estimate the
mean trophic level of landings, presented
here as time series by different groupings
of all FAO statistical areas and for the
world (11).

For all marine areas, the trend over the
past 45 years has been a decline in the mean
trophic level of the fisheries landings, from
slightly more than 3.3 in the early 1950s to
less than 3.1 in 1994 (Fig. 1A). A dip in the
1960s and early 1970s occurred because of
extremely large catches [&12 # 106 metric
tons (t) per year] of Peruvian anchoveta
with a low trophic level (12) of 2.2
(% 0.42). Since the collapse of the Peruvi-
an anchoveta fishery in 1972–1973, the
global trend in the trophic level of marine
fisheries landings has been one of steady
decline. Fisheries in inland waters exhibit,
on the global level, a similar trend as for the
marine areas (Fig. 1B): A clear decline in
average trophic level is apparent from the
early 1970s, in parallel to, and about 0.3
units below, those of marine catches. The
previous plateau, from 1950 to 1975, is due

to insufficiently detailed fishery statistics
for the earlier decades (10).

In northern temperate areas where the
fisheries are most developed, the mean tro-
phic level of the landings has declined
steadily over the last two decades. In the
North Pacific (FAO areas 61 and 67; Fig.
2A), trophic levels peaked in the early
1970s and have since then decreased rapid-
ly in spite of the recent increase in landings
of Alaska pollock, Theragra chalcogramma,
which has a relatively high trophic level of
3.8 (% 0.24). In the Northwest Atlantic
(FAO areas 21 and 31; Fig. 2B), the fisher-
ies were initially dominated by planktivo-
rous menhaden, Brevoortia spp., and other
small pelagics at low trophic levels. As their
landings decreased, the average trophic lev-
el of the fishery initially increased, then in
the 1970s it reversed to a steep decline.
Similar declines are apparent throughout
the time series for the Northeast Atlantic
(FAO area 27; Fig. 2C) and the Mediterra-
nean (FAO area 37; Fig. 2C), although the
latter system operates at altogether lower
trophic levels.

The Central Eastern Pacific (FAO area
77; Fig. 3A), Southern and Central Eastern
Atlantic (FAO areas 41, 47, and 34; Fig.
3B), and the Indo-Pacific (FAO areas 51,
57, and 71; Fig. 3C) show no clear trends
over time. In the southern Atlantic this is
probably due to the development of new
fisheries, for example, on the Patagonian
shelf, which tends to mask declines of
trophic levels in more developed fisheries.
In the Indo-Pacific area, the apparent sta-
bility is certainly due to inadequacies of

Fig. 1. Global trends of mean trophic level of
fisheries landings, 1950 to 1994. (A) Marine areas;
(B) inland areas.

Fig. 2. Trends of mean trophic level of fisheries landings in northern temperate areas, 1950 to 1994. (A)
North Pacific (FAO areas 61 and 67); (B) Northwest and Western Central Atlantic (FAO areas 21 and 31);
(C) Northeast Atlantic (FAO area 27); and (D) Mediterranean (FAO area 37).

Fig. 3. Trends of mean trophic levels of fisheries
landings in the intertropical belt and adjacent wa-
ters. (A) Central Eastern Pacific (FAO area 77 ); (B)
Southwest, Central Eastern, and Southeast Atlan-
tic (FAO areas 41, 34, and 47); and (C) Indo (west)-
Pacific (FAO areas 51, 57, and 71).
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the statistics, because numerous accounts
exist that document species shifts similar
to those that occurred in northern tem-
perate areas (13).

The South Pacific areas (FAO areas 81
and 87; Fig. 4A) are interesting in that they
display wide-amplitude fluctuations of tro-
phic levels, reflecting the growth in the mid-
1950s of a huge industrial fishery for Peruvi-
an anchoveta. Subsequent to the anchoveta
fishery collapse, an offshore fishery devel-
oped for horse mackerel, Trachurus murphyi,
which has a higher trophic level (3.3 %
0.21) and whose range extends west toward
New Zealand (14). Antarctica (FAO areas
48, 58, and 88; Fig. 4B) also exhibits high-
amplitude variation of mean trophic levels,
from a high of 3.4, due to a fishery that
quickly depleted local accumulations of bony
fishes, to a low of 2.3, due to Euphausia
superba (trophic level 2.2 % 0.40), a large
krill species that dominated the more recent
catches.

The gross features of the plots in Figs. 2
through 4, while consistent with previous
knowledge of the dynamics of major stocks,
may provide new insights on the effect of
fisheries on ecosystems. Further interpreta-
tion of the observed trends is facilitated by
plotting mean trophic levels against catches.
For example, the four systems in Fig. 5 illus-
trate patterns different from the monotonous
increase of catch that may be expected when
fishing down food webs (15). Each of the
four systems in Fig. 5 has a signature marked
by abrupt phase shifts. For three of the ex-
amples, the highest landings are not associ-
ated with the lowest trophic levels, as the
fishing-down-the-food-web theory would
predict. Instead, the time series tend to bend
backward. The exception (where landings
continue to increase as trophic levels de-
cline) is the Southern Pacific (Fig. 5C),
where the westward expansion of horse
mackerel fisheries is still the dominant fea-
ture, thus masking more local effects.

The backward-bending feature of the
plots of trophic levels versus landings, which
also occurs in areas other than those in Fig.
5, may be due to a combination of the fol-
lowing: (i) artifacts due to the data, methods,
and assumptions used; (ii) large and increas-
ing catches that are not reported to FAO;
(iii) massive discarding of bycatches (16)
consisting predominantly of fish with low
trophic levels; (iv) reduced catchability as a
result of a decreasing average size of exploit-
able organisms; and (v) fisheries-induced
changes in the food webs from which the
landings were extracted. Regarding item (i),
the quality of the official landing statistics
we used may be seen as a major impediment
for analyses of the sort presented here. We
know that considerable under- and misre-
porting occur (16). However, for our analy-
sis, the overall accuracy of the landings is not
of major importance, if the trends are unbi-
ased. Anatomical and functional consider-
ations support our assumption that the tro-
phic levels of fish are conservative attributes
and that they cannot change much over
time, even when ecosystem structure chang-
es (17). Moreover, the increase of young fish
as a proportion of landings in a given species
that result from increasing fishing pressure
would strengthen the reported trends, be-
cause the young of piscivorous species tend
to be zooplanktivorous (18) and thus have
lower trophic levels than the adults. Items
(ii) and (iii) may be more important for the
overall explanation. Thus, for the Northeast
Atlantic, the estimated (16) discard of 3.7 #
106 t year'1 of bycatch would straighten out
the backward-bending curve of Fig. 5B.

Item (iv) is due to the fact that trophic
levels of aquatic organisms are inversely re-
lated to size (19). Thus, the relation between
trophic level and catch will always break
down as catches increase: There is a lower
size limit for what can be caught and mar-
keted, and zooplankton is not going to be
reaching our dinner plates in the foreseeable
future. Low catchability due to small size or
extreme dilution ((1 g m'3) is, similarly, a
major reason why the huge global biomass
()109 t) of lanternfish (family Myctophi-
dae) and other mesopelagics (20) will con-
tinue to remain latent resources.

If we assume that fisheries tend to switch
from species with high trophic levels to
species with low trophic levels in response
to changes of their relative abundances,
then the backward-bending curves in Fig. 5
may be also due to changes in ecosystem
structure, that is, item (v). In the North
Sea, Norway pout, Trisopterus esmarkii,
serves as a food source for most of the
important fish species used for human con-
sumption, such as cod or saithe. Norway
pout is also the most important predator on
euphausiids (krill) in the North Sea (3).

Fig. 4. High-amplitude changes of mean trophic levels in fisheries landings. (A) South Pacific (FAO areas
81 and 87 ); (B) Antarctica (FAO areas 48, 58, and 88).

Fig. 5. Plots of mean trophic levels in fishery landings versus the landings (in millions of metric tons) in
four marine regions, illustrating typical backward-bending signatures (note variable ordinate and abcissa
scales). (A) Northwest Atlantic (FAO area 21); (B) Northeast Atlantic (FAO area 27 ); (C) Southeast Pacific
(FAO area 87 ); (D) Mediterranean (FAO area 37 ).
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We must therefore expect that a directed
fishery on this small gadoid (landings in the
Northeast Atlantic are about 3 # 105 t
year'1) will have a positive effect on the
euphausiids, which in turn prey on copep-
ods, a much more important food source for
commercial fish species than euphausiids.
Hence, fishing for Norway pout may have a
cascading effect, leading to a build-up of
nonutilized euphausiids. Triangles such as
the one involving Norway pout, euphausi-
ids, and copepods, and which may have a
major effect on ecosystem stability, are in-
creasingly being integrated in ecological
theory (21), especially in fisheries biology
(22).

Globally, trophic levels of fisheries land-
ings appear to have declined in recent de-
cades at a rate of about 0.1 per decade,
without the landings themselves increasing
substantially. It is likely that continuation
of present trends will lead to widespread
fisheries collapses and to more backward-
bending curves such as in Fig. 5, whether or
not they are due to a relaxation of top-down
control (23). Therefore, we consider esti-
mations of global potentials based on ex-
trapolation of present trends or explicitly
incorporating fishing-down-the-food-web
strategies to be highly questionable. Also,
we suggest that in the next decades fisheries
management will have to emphasize the
rebuilding of fish populations embedded
within functional food webs, within large
“no-take” marine protected areas (24).
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in Retinoid Receptor Mutant Mice
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In the adult mouse, single and compound null mutations in the genes for retinoic acid
receptor * and retinoid X receptors * and + resulted in locomotor defects related to
dysfunction of the mesolimbic dopamine signaling pathway. Expression of the D1 and
D2 receptors for dopamine was reduced in the ventral striatum of mutant mice, and the
response of double null mutant mice to cocaine, which affects dopamine signaling in the
mesolimbic system, was blunted. Thus, retinoid receptors are involved in the regulation
of brain functions, and retinoic acid signaling defects may contribute to pathologies such
as Parkinson’s disease and schizophrenia.

The retinoic acid (RA) signal is trans-
duced by two nuclear receptor families, the
retinoic acid receptors (RAR,, RAR*, and
RAR+) and the retinoid X receptors
(RXR,, RXR*, and RXR+), which func-
tion as RAR-RXR heterodimers and play

important roles during mouse embryonic
development and postnatal life [(1–4) and
references therein]. The high levels of ex-
pression of retinoid receptors in the brain
and spinal cord (5), together with the RA
responsiveness of various neurotransmitter
pathways in vitro (6, 7), suggest that reti-
noid signaling might be involved in the
regulation of neural functions. The locomo-
tor skills of knockout mice for the genes
encoding RAR*, RAR+, RXR*, and
RXR+, all of which are normally expressed
in the striatum (5), were analyzed by open
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